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Abstract. Zero-shot learning (ZSL) addresses the challenge of recogniz-
ing categories without labeled examples, which is essential for scalable
and adaptive vision systems. While CLIP models have shown promise
in ZSL by aligning images and text in a shared embedding space, they
struggle to capture structured inter-class relationships and nuanced se-
mantic dependencies, limiting their generalization to visually similar or
semantically complex unseen classes. In this work, we propose a novel
multimodal framework that enhances zero-shot classification by fusing
CLIP embeddings with structured knowledge graph reasoning and proto-
type networks. We construct class prototypes by combining CLIP-derived
text embeddings with relational embeddings obtained from a Relational
Graph Convolutional Network (R-GCN), guided by a prototype refine-
ment loss over a semantically enriched knowledge graph. A lightweight
MLP encoder maps CLIP image embeddings into this refined prototype
space using mean squared error, and classification is performed via cosine
similarity. We evaluate our model on benchmark ZSL datasets, show-
ing that it outperforms baseline CLIP methods and demonstrates the
effectiveness of incorporating relational semantics for robust prototype-
guided generalization.
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networks, relational graph convolutional networks, CLIP embeddings,
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1 Introduction

1.1 Motivation

The ability to recognize and reason about previously unseen categories is a core
aspect of human intelligence and a critical capability for scalable machine learn-
ing systems. In many domains, such as healthcare diagnostics, ecological moni-
toring, and industrial inspection, it is infeasible to collect sufficient labeled data
for every possible class. Zero-Shot Learning (ZSL), which enables models to
classify novel categories without direct supervision, addresses this challenge by
relying on auxiliary semantic information. However, most existing approaches
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either underperform in real-world generalization tasks or fail to incorporate the
rich structure of domain knowledge. Developing more robust and semantically
aware ZSL models is essential for enabling intelligent systems that can adapt to
novel concepts with minimal human intervention.

1.2 Limitations of Existing Work

Recent models such as CLIP have shown promise in zero-shot classification by
aligning images and textual descriptions in a shared embedding space. Despite
their effectiveness, these models rely primarily on surface-level image-text sim-
ilarity, which limits their ability to model fine-grained semantic relationships
or leverage contextual and hierarchical knowledge among classes. For instance,
CLIP may struggle to distinguish between semantically close but visually dis-
tinct categories due to its lack of structured reasoning. Although some prior
efforts integrate knowledge graphs or class hierarchies, they often use them as
isolated modules or post-processing steps rather than deeply fusing them with
visual-language representations. Consequently, existing methods do not fully ex-
ploit structured knowledge to improve semantic alignment and generalization in
ZSL settings.

1.3 Proposed Approach and Contribution

In this work, we propose a novel zero-shot classification framework that inte-
grates CLIP embeddings, structured semantic reasoning via knowledge graphs,
and prototype-based matching into a unified system. Our model constructs class
prototypes by combining CLIP text embeddings with knowledge-aware graph
embeddings derived from a Relational Graph Convolutional Network (R-GCN)
trained on a class-level knowledge graph. A lightweight encoder is then trained
to map CLIP image embeddings into this enriched semantic space. Classification
is performed by computing the similarity between the encoded image and proto-
type representations. This approach enables the model to reason about unseen
classes based on both linguistic and relational context, rather than relying solely
on literal text-image alignment. Our key contributions include a novel fusion of
visual, textual, and graph-based semantics, and the design of a prototype refine-
ment mechanism guided by structured knowledge- leading to more interpretable
and generalizable zero-shot predictions.

2 Related Work

Zero-Shot Learning with Knowledge Graphs [1][2][3][4][5][6] Our work differs
from these by integrating CLIP’s image-text embeddings with knowledge graphs,
enhancing zero-shot image classification through a novel combination of visual
and semantic information.
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Graph Convolutional Networks (GCNs) in Zero-Shot Learning [7][8][5][6]

Unlike these studies that focus on GCNs for node classification, our ap-
proach applies GCNs to enrich CLIP embeddings for zero-shot image classifica-
tion, leveraging graph structures to enhance visual-semantic alignment.

Prototype-Based Approaches in Zero-Shot Learning [9][10][11][12]

Our method extends prototype-based learning by incorporating GCN-enhanced
CLIP embeddings, creating prototypes that benefit from both visual and struc-
tured semantic information for improved zero-shot classification.

Adapting CLIP for Zero-Shot Classification [13][14][15]

While these works adapt CLIP for classification tasks, our approach uniquely
combines CLIP embeddings with knowledge graphs and GCNs to enhance zero-
shot learning, leveraging structured semantic relationships alongside CLIP’s ca-
pabilities.

Prototype Refinement and Semantic Alignment Losses [9][16][17][18]

Our work introduces a prototype refinement loss that enforces semantic con-
sistency between refined prototypes and original CLIP embeddings, guided by
knowledge graph structures, which is distinct from prior methods that do not
incorporate such structured semantic supervision.

Zero-Shot Learning with CLIP and Semantic Graphs [14][13][11]

Our approach differs by combining CLIP’s image-text embeddings with struc-
tured semantic information from knowledge graphs, enriching the embeddings
through GCNs to enhance zero-shot classification, as opposed to solely relying
on image-text similarity or traditional semantic embeddings.

3 Methodology

Our proposed method enhances zero-shot classification by combining CLIP’s text
embeddings with structured relational knowledge via a knowledge graph (KG)
and graph-based prototype refinement. We further aligned image representations
to these refined class prototypes through a lightweight mapping network. This
section describes each component in detail.

3.1 Dataset Preparation and Class Splitting

We used the Animals with Attributes 2 (AWAZ2) dataset, which contains
labeled images across 50 animal classes along with attribute annotations. We
used 10 out of these classes, using 350 images per seen class for training and 20
images per unseen class for testing. Following the zero-shot learning protocol,
we split the classes equally into:

— Seen Classes: Used during training (e.g., cow, horse).
— Unseen Classes: Used only during testing (e.g., zebra, buffalo).

This split ensured that unseen class images are never encountered during
training, providing a true zero-shot evaluation setting.
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3.2 Knowledge Graph Construction

We constructed a Knowledge Graph (KG) where nodes represent classes and
edges represent semantic relationships. The graph was additionally manually
enriched with attribute-based relations as well as contrasts in addition to natural
taxonomy-inspired links. Examples of relationships include:

— Horse <> Zebra (both are equines, have hooves).
— Cow <> Horse (both are farm animals).
— Deer <+ Blue whale (deer is a land animal while blue whale lives in water).

Node features were initialized using CLIP text embeddings of class descrip-
tions, ensuring compatibility with the downstream image encoder.

3.3 Text Embedding Extraction (CLIP)

For each class ¢, we created a textual description (e.g., “a photo of a horse”) and
passed it through the pretrained CLIP text encoder to obtain a fixed-dimensional
embedding:

t. = CLIPe (" A photo of a ¢”)
where t. € R? and d is typically 512.

3.4 Prototype Refinement via R-GCN with Predicate-Aware
Semantic Graph

To refine the initial CLIP text embeddings of class names using structured se-
mantic relationships, we employ a Relational Graph Convolutional Net-
work (R-GCN) trained over a custom knowledge graph Giriples- This graph
is composed of predicate-level semantic triples, where nodes represent animal
classes and directed edges represent two types of relationships: (i) descriptive
predicates (e.g., “has_tail”, “has_hooves”), and (i) contrastive predicates (e.g.,
“contrast_tail”, “contrast_blue”). All relationships are treated as undirected by
symmetrically adding reverse-direction triples.

Target Similarity Matriz. To supervise the refinement process, we define a target
similarity matrix S € RE*¢, where C is the number of classes. For each pair of
classes (4,7), a scalar similarity score S;; is computed based on the number of
shared and contrasting predicates that were available in the dataset. Let ngim
and neon denote the counts of similarity and contrast predicates between class @
and j. Then:

Nsim+Ncon+€’

S — —Nemte _©if < 0.75(Ngim + Tcon)
Yo 0, otherwise

where € is a small constant to avoid division by zero. This matrix encourages
similar classes to have refined embeddings close to each other, and dissimilar
ones to be distant.
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R-GCN Training and Prototype Refinement Loss. We train the R-GCN using the
semantic graph Giiples and the target similarity matrix S. The R-GCN refines
the initial CLIP-based text embedding t. for each class c into a prototype vector
g. by propagating predicate-level information through the graph:

gc = R'GCN(tca gtriplcs)

To ensure that the refined prototypes align with the semantic relationships
encoded in the graph, we introduce the Prototype Refinement Loss as part
of the training objective. The R-GCN is trained for 300 epochs using the Adam
optimizer with a learning rate of 1074,

3.5 Prototype Refinement Loss using Semantic Supervision

To encourage the R-GCN to produce refined class prototypes that preserve both
semantic alignment with the original CLIP embeddings and structured dissim-
ilarity based on knowledge graph relationships, we introduce a custom Proto-
type Refinement Loss.

Given a set of refined class embeddings g € R“*? from the R-GCN and the
original CLIP-based embeddings z € R€*¢, our loss consists of two components:

1. Alignment Loss: This term ensures the refined prototypes stay close to the
original ones in the CLIP semantic space. We compute the average cosine
similarity between corresponding pairs and define the alignment loss as:

C
1
Ealign =1- 5 ;COS(g’“Zi)

2. Separation Loss: To enforce inter-class structural relationships, we con-
struct a soft similarity matrix S € R€*¢ based on the frequency of similar
and contrastive predicates between each class pair in the knowledge graph.
We compute the pairwise cosine similarity of the refined prototypes and
apply a mean squared error loss with respect to S:

1
ACsep - @ Z (COS(gi, gj) - Siﬁj)2

]

The total prototype refinement loss is a weighted combination of the two
terms:

Eproto = Q- Ealign + B : ‘Csep

We set @« = 1.0 and 8 = 0.8 based on validation performance. The soft
target similarity matrix S is derived by analyzing the KG’s edge structure: for
each class pair (c1,c2), we compute the proportion of ”similar” relations out
of all predicate types (including contrastive ones). Pairs with overwhelmingly
contrastive links are penalized to have zero similarity.
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Motivation for Similarity-Based Supervision: Rather than treating class proto-
types as independent, we aim to structure their representations to reflect under-
lying semantic relationships. By supervising the R-GCN with a soft similarity
matrix derived from the knowledge graph, we enable it to encode graded prox-
imity between class embeddings. For example, the refined prototype for “horse”
should lie closer to “cow” than to “killer whale,” based on shared versus con-
trasting predicates. This encourages the model to learn a semantically mean-
ingful topology over the prototype space, improving its ability to generalize to
unseen but related classes (e.g., zebra). The separation loss component ensures
this structure is reflected in the learned embeddings, while the alignment loss
keeps prototypes faithful to their original CLIP representations.

3.6 Prototype Construction

Once trained, the refined prototypes {g.} are extracted and reordered according
to a predefined canonical order of classes. This allows for consistent downstream
comparisons. The reordered prototypes are then saved for further analysis. After
refinement, each class ¢ has a final prototype vector:

Pc = 8¢

These prototypes are used as targets during the mapping of image embed-
dings.
3.7 Image Embedding Extraction (CLIP)

Each training image (i.e., images of seen classes) x; was passed through the
frozen CLIP image encoder to obtain an image embedding:

V; = CLIPimage (IZ)

where v; € R4

3.8 Lightweight Mapping Network and Training Objective

To align the CLIP image embeddings with the refined class prototypes, we
trained a lightweight Multi-Layer Perceptron (MLP) mapping network fy:

Vi = fo(vi)
The MLP is optimized using a Mean Squared Error (MSE) loss between the
mapped image embedding v; and the prototype of its ground-truth class py:

1
N 2
Lmap = 37 > Vi = pyll; (1)
i=1
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where N is the number of training examples, and || ||2 denotes the Euclidean
norm. This loss encourages the mapped image embeddings to be close to their
corresponding class prototypes in the embedding space.

The training process for the MLP can be summarized as follows:

1. Loading Prototypes: The class prototypes are loaded from a pre-trained
file, where they represent the refined class embeddings:

P:{P17P27-~7PC}

where C' is the number of classes.

2. Loading Image Embeddings: For each class, the image embeddings are
loaded, and the corresponding labels are generated. The image embeddings
v; are normalized to unit length.

3. Generating Soft Similarity Targets: The soft similarity targets are com-
puted by normalizing both the image embeddings v; and the prototypes py,
then computing the cosine similarity between the normalized embeddings:

Vi Pj
[villzllp;ll2
4. Training the MLP: The MLP is trained with the objective of minimizing

the MSE loss between the mapped image embeddings and the soft similarity
targets. The loss is computed as:

Sij =

1 N
~ 2
Emap = N Z Hvz - pyHQ
=1

where V; are the outputs of the MLP.

5. Optimization: We use the Adam optimizer with a learning rate of 1 x 1073
and train the network for 10 epochs. At each epoch, the model is updated
using backpropagation to minimize the loss.

6. Saving the Model: After each epoch, the model’s state is saved to a check-
point file. The final model is also saved after training.

3.9 Inference Pipeline (Zero-Shot Prediction)
At test time, for an unseen image Ziest, the following steps were performed:
1. The CLIP image embedding for the test image was extracted:
Viest — CLIPimage(xtest)
2. The embedding was mapped via the trained Multi-Layer Perceptron (MLP):

Viest = fo (Vtest)

3. The class with the highest cosine similarity between the mapped embedding
and the prototype matrix was predicted:

g =arg max cos(Viest, Pc)
c€Cunseen
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3.10 Evaluation Procedure

To evaluate the model, we performed the following;:

— We loaded the trained model and prototype matrix.

— For each test sample, we calculated the cosine similarity between the mapped
image embedding and each of the class prototypes.

— We predicted the class corresponding to the highest cosine similarity score.
The top-2 predictions were considered to account for potential semantic
equivalence between class names (e.g., "zebra” and ”horse”).

— We computed both top-1 accuracy (direct class match) and adjusted accu-
racy (including semantic equivalence or the second-best prediction) to eval-
uate performance.

— Precision, recall, and F1 score metrics using Top 1 predictions were computed
to evaluate the model’s performance in a balanced manner across all classes.

3.11 Design Rationale

— Why CLIP? CLIP offers strong zero-shot capabilities due to its large-scale
pretraining on image-text pairs.

— Why Knowledge Graph? It enables structured semantic reasoning by in-
corporating both attribute-level and relational information between classes.

— Why R-GCN? It effectively handles multiple relation types in the knowl-
edge graph, enriching class embeddings in a relation-aware manner.

— Why Prototype Refinement Loss? It enforces semantic consistency in
the prototype space, aiding better generalization to unseen classes.

— Why MLP Mapper? It provides flexibility to adapt CLIP image embed-
dings to the new prototype space without altering the frozen CLIP encoders.

4 Experiments

We designed a series of three experiments to evaluate the contributions of dif-
ferent components in our model - graph structure, relation types, and prototype
refinement loss - toward unseen class classification. In each case, we trained a
lightweight MLP classifier over the node embeddings and evaluated on unseen
classes.

4.1 Experiment 1: CLIP Embeddings + MLP

Setup: We removed graph processing and trained the MLP directly over raw
CLIP text embeddings of class names.

Purpose: This served as a strong baseline to test the zero-shot performance of
pretrained CLIP embeddings without any graph-based enhancement.
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Evaluation Metrics: We evaluated performance using Top-1 Accuracy, Adjusted
Accuracy (Top-2), Macro Precision, Macro Recall, and Macro Fl-score.

Results: The model achieved a Top-1 Accuracy of 36%, an Adjusted Accuracy
of 100%, Macro Precision of 0.3333, Recall of 0.2000, and Fl-score of 0.2276.
Class-wise performance:

— Antelope: 0% (Adjusted: 100%)

— Buffalo: 15% (Adjusted: 100%)

— Chimpanzee: 65% (Adjusted: 100%)
— Killer Whale: 100% (Adjusted: 100%)
— Zebra: 0% (Adjusted: 100%)

Discussion: While CLIP embeddings helped the model achieve perfect Adjusted
Accuracy, Top-1 results were modest. This indicates that although CLIP pro-
vides rich semantic priors, it lacks the ability to contextualize class semantics
relative to one another, which is essential for disambiguating unseen classes in
fine-grained classification. Interestingly, classes like ”Killer Whale” and ”Chim-
panzee” achieved high scores, likely because they are semantically distinct in the
CLIP space. However, visually or contextually similar classes like ”Zebra” and
” Antelope” were harder to separate without additional structural context.

4.2 Experiment 2: GCN with Only Edge Weights + MSE Loss

Setup: We trained a GCN using only scalar edge weights between classes, without
any notion of relation types. CLIP text embeddings were used as initial node
features, and the model was trained using Mean Squared Error (MSE) loss to
match CLIP embeddings.

Purpose: This setup served as a basic graph baseline to assess how far simple
class similarity (based on edge weights) could take the model without semantic
relational structure.

FEvaluation Metrics: We evaluated performance using Top-1 Accuracy, Adjusted
Accuracy (Top-2), Macro Precision, Macro Recall, and Macro F1-score.

Results: The model achieved a Top-1 Accuracy of 43%, an Adjusted Accuracy
of 63%, Macro Precision of 0.3389, Recall of 0.3583, and Fl-score of 0.3105.
Class-wise performance:

Antelope: 55% (Adjusted: 60%)
Buffalo: 65% (Adjusted: 95%)

— Chimpanzee: 0% (Adjusted: 60%)
— Killer Whale: 0% (Adjusted: 0%)
— Zebra: 95% (Adjusted: 100%)
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Discussion: The model performed noticeably better than the CLIP-only baseline
on several classes, suggesting that even a simplistic graph structure capturing
pairwise similarity is beneficial. However, performance varied significantly across
classes, with failures on semantically ambiguous categories. This inconsistency
suggests that scalar edge weights alone may be insufficient to guide fine-grained
reasoning, particularly in cases where multiple unseen classes are conceptually
similar or poorly connected in the graph.

4.3 Experiment 3: R-GCN with Relations and Contrasts +
Prototype Refined Loss

Setup: We constructed a full knowledge graph incorporating typed relations and
contrast predicates. An R-GCN was trained with the Prototype Refined Loss,
and final embeddings were passed through an MLP.

Purpose: This final setup aimed to combine structural relational reasoning with
semantic alignment to form interpretable and discriminative class prototypes.

Evaluation Metrics: We evaluated performance using Top-1 Accuracy, Adjusted
Accuracy (Top-2), Macro Precision, Macro Recall, and Macro Fl-score.

Results: The model achieved a Top-1 Accuracy of 59%, an Adjusted Accuracy
of 100%, Macro Precision of 0.5556, Recall of 0.3278, and Fl-score of 0.3577.
Class-wise performance:

— Antelope: 80% (Adjusted: 100%)

— Buffalo: 95% (Adjusted: 100%)

— Chimpanzee: 5% (Adjusted: 100%)

— Killer Whale: 100% (Adjusted: 100%)
Zebra: 15% (Adjusted: 100%)

Discussion: This configuration yielded the best overall performance, particu-
larly in Top-1 accuracy and Fl-score. The integration of relation and contrast
predicates allowed the R-GCN to learn richer semantic structures that help dis-
tinguish between classes, especially when those classes are conceptually close.
The Prototype Refined Loss further anchored class embeddings to the CLIP se-
mantic space, improving alignment and interpretability. That said, the model
still struggled with low precision on classes like ”Chimpanzee” and ”Zebra,”
which may suggest that the predicate coverage or quality for these classes is
insufficient or noisy.

4.4 Quantitative Comparison

Summary. The final model combining relational structure, contrastive cues, and
prototype refinement (Experiment 3) significantly outperformed all baselines.



Title Suppressed Due to Excessive Length 11

Table 1. Performance Comparison Across Experiments

Experiment Top-1 Acc|Adj. Acc|Precision|Recall| F1

CLIP + MLP (Expt 1) 0.36 1.00 0.3333 | 0.2000 | 0.2276
Edge + MSE Loss (Expt 2) 0.43 0.63 0.3389 |0.3583|0.3105
R-GCN + PR Loss (Expt 3) 0.59 1.00 0.5556 |0.3278|0.3577

Results demonstrate that a structured knowledge graph with semantically mean-
ingful predicates enables better generalization to unseen classes, especially when
guided by prototype alignment. A consistent trend across experiments is the
increasing benefit of structured context: from raw CLIP semantics (Expt 1), to
similarity-based reasoning (Expt 2), and finally to full relational and contrastive
modeling (Expt 3).

Limitations and Future Work. Despite overall improvement, certain classes (e.g.,
” Chimpanzee,” ” Zebra”) continued to show low Top-1 accuracy, indicating that
predicate quality, density, or coverage may vary significantly across the graph.
Another limitation lies in our reliance on hand-constructed or static predicate
triples, which may not capture nuances or context-specific meanings. Future
work could explore dynamically generated graphs using large language models
or incorporate vision-language grounding directly into the edge semantics. Ad-
ditionally, scaling the model to larger and more diverse class vocabularies, along
with ablations on different types of predicates (e.g., spatial vs. behavioral), could
offer deeper insights into which semantics most influence generalization to unseen
categories.

5 Conclusion

We presented a novel zero-shot classification framework that synergistically inte-
grates CLIP embeddings, knowledge graph-based relational reasoning, and pro-
totype networks to improve generalization to unseen classes. Our key innovation
lies in the fusion of multimodal information—textual, visual, and structured se-
mantic—into a unified prototype space. By refining class prototypes using a Rela-
tional Graph Convolutional Network (R-GCN) trained with a custom prototype
refinement loss, we enforced semantically consistent distances between related
and unrelated class representations. This structure-aware prototype space, when
paired with a lightweight MLP trained to align CLIP image embeddings using
mean squared error loss, enabled accurate classification via prototype matching
even for completely unseen classes.

Through a series of ablation experiments, we demonstrated the contribution
of each component to zero-shot performance. Notably, incorporating relational
semantics through the knowledge graph and the prototype refinement loss signif-
icantly improved both classification accuracy and semantic discrimination. Our
approach outperformed naive CLIP-based baselines, emphasizing the importance
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of modeling inter-class relationships and predicate-level semantics in zero-shot
tasks.

Future work could explore scaling this framework to larger and diverse datasets,
incorporating automatically mined relationships, and extending it to generalized
zero-shot settings. We also envision applications beyond object classification,
such as cross-modal retrieval and open-world detection, where structured mul-
timodal reasoning remains critical. Overall, this work highlights the potential
of combining pretrained vision-language models with structured knowledge to
bridge the gap between visual perception and semantic understanding in open-
world scenarios.

While our framework enhances semantic generalization in zero-shot settings,
it inherits certain limitations from the underlying pretrained models like CLIP.
These include potential biases in training data, which may propagate into the
knowledge graph embeddings and result in skewed or unfair classifications for
underrepresented or culturally specific classes. Furthermore, the use of con-
trastive predicates raises questions about interpretability and the explainability
of learned representations, which are critical in sensitive application domains like
healthcare or law enforcement. As zero-shot systems are deployed in increasingly
open-world environments, ensuring transparency in how relationships influence
predictions and adopting fairness-aware training strategies become essential. Fu-
ture iterations of this framework should incorporate auditing mechanisms and
bias mitigation techniques to address these concerns responsibly.
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